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A simple and robust method to precisely determine local strain fields using

energy-unfiltered convergent-beam electron diffraction is presented. This

method involves the subtraction of background intensity, the extraction of

higher-order Laue-zone lines by tracing using a Radon transformation and a

system of analytical strain determination without the need for an optimization

routine such as �2-based minimization. As an example, the measurement of

residual strain in a silicon-on-insulator wafer is demonstrated. It is found from

micro-Raman spectroscopy analysis that, at the nanometre scale, this

measurement succeeds with an accuracy of 0.06%.

1. Introduction

Recent advances in semiconductor technology have reduced

structure sizes to the submicrometre scale (Sperars & Smith,

1972; Ogawa et al., 1996; Fukuda et al., 1996). This emphasis on

miniaturization necessitates the elucidation of local properties

of the materials used in semiconductor technology and

increases the demand for measurements on the nanometre

scale. Furthermore, semiconductor devices become functional

through combinations of different materials, so that lattice

strain is induced around the interfaces in these heterogeneous

systems. In general, the strain at an interface is caused by the

differences in lattice constant, thermal expansion coefficient

and elastic constant between two materials. Since such strain

can often lead to a breakdown of functionality, intensive

theoretical and experimental studies have been carried out in

order to understand its effects.

Currently, strain over an area of a few micrometres can be

precisely evaluated by X-ray diffraction (Ando et al., 1973;

Yamamoto & Sakata, 1989), microscopic Raman spectroscopy

(Wolf et al., 1993) and photoluminescence spectroscopy

(Shirakata et al., 1986). However, these techniques have a

common drawback in that their spatial resolution is limited to

approximately 1 mm, which is insufficient for the investigation

of strain in the latest devices. Transmission electron micros-

copy (TEM) has greatly contributed to local structural and

compositional analysis owing to its high spatial resolution, and

high-resolution TEM image processing is another technique

that allows local strain to be measured (Hÿtch et al., 1998;

Gerthsen et al., 2000; Ruterana et al., 2002). High-angle

annular dark-field scanning transmission electron microscopy

has also succeeded in determining the local strain around the

InGaN layer in multiple quantum wells InGaN/GaN (Wata-

nabe et al., 2003). However, despite their high spatial resolu-

tion, the accuracy of TEM methods is currently much lower

than that of X-ray diffraction.

The only technique with the potential to provide informa-

tion on the lattice strain with sufficiently high spatial resolu-

tion and accuracy may be convergent-beam electron

diffraction (CBED), which uses higher-order Laue-zone

(HOLZ) lines that appear in a bright-field disc. Probes with

diameters of a few nanometres can easily be formed, thus

CBED is well adapted to the dimensions over which strain

may vary in the latest devices. Consequently, there are a

growing number of studies in which this technique has been

successfully applied to many materials (Rozeveld & Howe,

1993; Tomokiyo et al., 1994; Wittmann et al., 1998; Yonemura et

al., 1999; Krämer et al., 2000; Uesugi et al., 2000; Toda et al.,

2000; Akagi et al., 2004). However, there are various problems

inherent to the CBED technique, for example its thin-foil

relaxations and dynamical scattering effects. Furthermore,

since inelastic scattering gives faded HOLZ lines that make

their analysis difficult, energy-filtered CBED patterns are

essential for accurate studies (Spence & Zuo, 1993; Deininger

et al., 1994). However, energy filtering is very rarely incor-

porated in electron microscopes. In addition, the lack of an

accurate refinement algorithm has prevented the imple-

mentation of the CBED method as a standard technique for

strain measurement, although some optimized algorithms

involving a �2-based minimization routine have already been

proposed (Zuo, 1992; Krämer & Mayer, 1999).

In this paper, we report a different technique for high-

precision measurements of local residual strain using energy-

unfiltered CBED, which has two advantages. First, lattice



parameters are obtained at first hand without the need for a

refinement process, thus the results are independent of in-

itially specified lattice parameters. Second, this method

achieves an accuracy of 0.06% even with energy-unfiltered

CBED patterns, whereas an accuracy of 0.2% is generally

required in practice.

2. Experimental procedure

CBED measurements of [012]-oriented Si were carried out

because they yielded a sufficient number of intense HOLZ

lines and the kinematical approximation is appropriate. A

silicon-on-insulator (SOI) wafer was used in this study,

comprised of a sandwich structure of a 50 mm thick n-type

Si(100) layer with a resistivity of 10 � cm, a 500 nm thick

buried oxide (BOX) layer and an n-type Si(100) substrate. It

was fabricated by a bonded method. In order to obtain the

CBED patterns of Si(012), specimens were prepared as

follows. Si chips were pasted onto each side of the SOI wafer

for reinforcement and were cut into 18� oriented slabs. The

samples were mechanically thinned and polished to a thick-

ness of approximately 20 mm by using a dimple grinder. Final

thinning was carefully carried out by means of 4 keV Ar+ ion

milling at an angle of 4�. CBED patterns were obtained using a

HITACH H-9000NAR electron microscope operated at

200 keV with a 10 nm probe and an LaB6 filament. All

measurements were performed at room temperature.

Micro-Raman spectroscopy was carried out using a

Ramanor U-1000 (Jobin Yvon) operated at 5 mW Ar+ laser

with an excitation wavelength of 457.9 nm. The radius of the

focused laser beam was 500 nm. Micro-Raman spectra of both

sides of the wafer, taken at points 500 nm away from the

interfaces, are shown in Fig. 1. The side of the Si substrate has

a slight tensile stress and that of the Si overlay has a

compressive stress.

3. Methods

Before obtaining the local lattice parameters, it is necessary to

determine the accelerating voltage accurately using a refer-

ence CBED pattern taken at a stress-free region. The raw

experimental CBED pattern is shown in Fig. 2(a). The method

by which HOLZ lines are traced is outlined below.

3.1. Background subtraction and tracing HOLZ lines by
Radon transformation

In order to determine local strain, it is necessary to extract

the straight HOLZ lines from an experimental CBED pattern

with high precision. However, it is difficult to directly trace

HOLZ lines from raw CBED patterns owing to the noise, and

the high intensity distribution, of the background. The back-

ground intensity distribution, which has to be subtracted

initially, gradually decreases from the centre of the CBED

disc. Therefore, the background intensity must be eliminated

by a Fourier filtering method, in which a mask is applied to the

central spot in Fourier space. The background-subtracted

reference CBED pattern, where the optimum mask size was

used, is shown in Fig. 2(b). Notably, both the second-order

Laue-zone lines and the first-order Laue-zone (FOLZ) lines

can clearly be visualized by this simple approach. Black masks

are then applied to the intersections of the HOLZ lines, as

shown in Fig. 2(c), because the HOLZ lines near the inter-
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Figure 1
Raman spectra of both sides of the SOI wafer taken at points 500 nm
away from the Si–SiO2 interfaces, together with the reference spectrum.

Figure 2
(a) Experimental energy-unfiltered CBED pattern of a [012]-oriented Si
substrate from a stress-free region, (b) image with the background
intensity subtracted, (c) image in which black masks are applied at all
intersections of two HOLZ lines. (c) is used for the initial image. (d)
Transformed space image calculated by Radon transformation of (c). (e)
and ( f ) Enlarged images of two bright spots, used as examples, (g) and (h)
their corresponding noise-filtered images. (i) Image formed by super-
imposing all traced HOLZ lines on (b).



sections are bent by dynamical effects (Krämer & Mayer,

1999).

In recent years, the Hough and Radon transformations have

been used to automatically extract straight HOLZ lines, where

a discrete Radon transformation corresponds to the Hough

transformation (Hough, 1962; Zuo, 1992; Toft, 1996; Krämer &

Mayer, 1999; Krämer et al., 2000). These two methods are

standard tools in image analysis that allow the recognition of a

whole pattern in image space from a local pattern in trans-

formed space. We use the Radon transformation in the present

investigation:

Rð�; �Þ ¼
R1
�1

R1
�1

f ðx; yÞ�ð�� x cos � � y sin �Þ dxdy; ð1Þ

where f ðx; yÞ is the image intensity at ðx; yÞ. The Radon

transformation converts image space ðx; yÞ into transformed

space ð�; �Þ, in which each point corresponds to a straight line

in image space. The positions of the strong spots in trans-

formed space are coupled to the parameters of the straight

lines in image space. The transformation of the image in Fig.

2(c) is displayed in Fig. 2(d), where maxima are apparent as

strong bright spots. By way of illustration, enlarged images of

the two spots enclosed by white squares in Fig. 2(d) are shown

in Figs. 2(e) and 2( f). Since the experimental image contains a

distribution of intensities and noise, transformed space also

becomes noisy. In order to find the exact maxima, the Fourier

filtering method, in which the central spot in Fourier space is

covered by a mask, is applied. The noise-filtered images

corresponding to Figs. 2(e) and 2( f) are shown in Figs. 2(g)

and 2(h), respectively. The image formed by superimposing on

Fig. 2(b) all of the HOLZ lines obtained from the maxima in

transformed space is displayed in Fig. 2(i), where the quality of

the match confirms that the Radon transformation has the

capacity to extract straight HOLZ lines.

The error of tracing HOLZ lines is influenced by the

resolution of an experimental image and the resolution of

transformed space. The resolution of transformed space can

be enlarged theoretically so that subpixel analysis is attained

in Radon transformation (Krämer et al., 2000). In the present

analysis, the central disc of an experimental image is taken in

as a digital image of 1024� 1024 pixels by image scanner.

Furthermore, the resolution of transformed space is calculated

by 4096� 4096 pixels. The error of tracing HOLZ lines was

estimated using the dynamical simulated image. As a result, it

is found that tracing HOLZ lines is performed within the error

of �0:5 pixels.

3.2. Analytical determination of local lattice parameters

Under the kinematical approximation, HOLZ lines of an

hkl reflection are given by

Ky ¼ �
gx

gy

Kx þ
gz

gy

W �
g2

2gy

; ð2Þ

where Kx and Ky are projections of the wavevector onto the

coordinate axes x and y of the diffraction plane, and W is the

wavenumber corresponding to the effective accelerating

voltage. In the case of a triclinic system, gx, gy and gz are given

by

gx ¼
h

a sin �
�

Z cos�

c sin �

gy ¼ �
hX

aY sin �
þ

k

Y
�
ðZ sin �� X cos �Þ

Yc sin �

gz ¼
l

c

X ¼
bðcos � � cos� cos�Þ

sin �

Y ¼
b

sin �
½sin2 � sin2 �� ðcos� cos�� cos �Þ2�1=2

Z ¼ cos �:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

From these equations, the coordinate of the intersection

between two HOLZ lines corresponding to hkl and h0k0l0

reflections is easily calculable. Under the assumption of a

small strain field, the shift of this intersection can be analyti-

cally calculated by the Taylor expansion:

�Kx ¼
1

2ðhk0 � h0kÞ
k0 2

l

c
W �

h2

a2
�

k2

b2
�

l2

c2

� ���

� k 2
l0

c
W �

h02

a2
�

k02

b2
�

l02

c2

� ��
þ

1

a2
ðh2k0 � h02kÞ

�
�a

þ
akk0

b3ðhk0 � h0kÞ
ðk� k0Þ�b

þ
a

2ðhk0 � h0kÞ

1

c3
ðk0l2 � kl02Þ þ

W

c2
ðkl0 � k0lÞ

� �
�c

þ
1

2cðhk0 � h0kÞ
ab l0 2

l

c
W �

h2

a2
�

k2

b2
�

l2

c2

� ���

� l 2
l0

c
W �

h02

a2
�

k02

b2
�

l02

c2

� ��

�
abðhl0 � h0lÞ

hk0 � h0k
k0 2

l

c
W �

h2

a2
�

k2

b2
�

l2

c2

� ��

� k 2
l0

c
W �

h02

a2
�

k02

b2
�

l02

c2

� ��
þ

2kk0ðl0 � lÞ

b

�
��

þ
1

cðhk0 � h0kÞ
ðh0kl0 � hk0lÞ �

a2ðk0l � kl0Þ

2ðhk0 � h0kÞ

�

� k0 2
l

c
W �

h2

a2
�

k2

b2
�

l2

c2

� ��

� k 2
l0

c
W �

h02

a2
�

k02

b2
�

l02

c2

� ���
��

þ
1

hk0 � h0k

b

2
h0 2

l

c
W �

h2

a2
�

k2

b2
�

l2

c2

� ���

� h 2
l0

c
W �

h02

a2
�

k02

b2
�

l02

c2

� ��
þ

kk0ðh0 � hÞ

b

�
��; ð3Þ
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�Ky ¼
bhh0

a3ðh0k� hk0Þ
ðh� h0Þ�a

þ
1

2ðh0k� hk0Þ
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l
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where the higher-order terms of �a, �b, �c, ��, �� and ��
are neglected only when the strain field is very small. In this

way, the shift of intersections of HOLZ lines can be

approximated with a linear function for each lattice param-

eter, although an actual shift is given by a non-linear equation

of six lattice parameters.

Some researchers (Toda et al., 2000; Akagi et al., 2004) have

proposed methods of analysing CBED patterns by considering

only those HOLZ lines that are sensitive to the lattice par-

ameters. They assumed that HOLZ reflections are insensitive

to the lattice parameters associated with the direction parallel

to the incident electron beam and sensitive to those associated

with the direction perpendicular to the beam. In the present

coordinate system, the c axis coincides with the incident

direction, which is of great advantage in selecting the HOLZ

lines that are sensitive to small lattice strains. For our samples,

the a, b and c axes are set to the [100], [02�11] and [012] direc-

tions. The case where no strain is present is the tetragonal

system, where a ¼ 5:431, b ¼ 5:431�
ffiffiffi
5
p

, c ¼ 5:431�
ffiffiffi
5
p

nm

and � ¼ � ¼ � ¼ 90�. In the present configuration, it is found

that the coefficients of the linear equations containing �� and

�� are very small compared to those containing �a, �b, �c

and ��. This implies that only four lattice parameters, �a, �b,

�c and ��, can be determined. As for comparison with the

experimental data, four ratios of the distances between

intersections of HOLZ lines, e1, e2, e3 and e4, are used. The set

of equations involving the four ratios is represented as follows:

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

0
BBB@

1
CCCA

�a

�b

�c

��

0
BBB@

1
CCCA ¼

e1

e2

e3

e4

0
BBB@

1
CCCA

C � DS ¼ E; ð5Þ

where Cij are the coefficients obtained by the Taylor expan-

sion. By using equation (5), the four unknown lattice par-

ameters can be determined analytically.

If four equations are used then the number of equations and

unknowns is the same and there is a good chance of a solution

providing a unique set of lattice parameters. However, there is

no unique solution if one or more of the four equations are

linear combinations of the others, or if all equations contain

certain variables in exactly the same linear combination.

These considerations necessitate the calculation of the deter-

minant of the matrix constructed by coefficients of the

unknown parameters. A unique solution cannot be calculated

if the determinant is zero. Unfortunately, even if all combi-

nations of HOLZ lines in this orientation are taken, the

determinant of equation (5) becomes 0. In this case, it is

impossible to determine four lattice parameters indepen-

dently. Krämer et al. (2000) discussed this problem in detail

and used the volume calculated by the finite element method

as the third equation. In the present case, �b ¼ �c is assumed

owing to the symmetry of the sample and this relationship can

be used as the third equation. Therefore, the set of equations

to be solved is rewritten as:
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Figure 3
Cross-sectional bright-field TEM image of SOI wafer. White lines denote
the positions of Si/SiO2 interfaces. Upper, central and lower regions
correspond to the Si overlay, BOX, and Si substrate, respectively. The
CBED patterns were obtained with the incident electron beam parallel to
[012].



C11 C12 C13 C14

C21 C22 C23 C24

0 1 �1 0

C41 C42 C43 C44

0
BBB@

1
CCCA

�a

�b

�c

��

0
BBB@

1
CCCA ¼

e1

e2

0

e4

0
BBB@

1
CCCA

C0 � DS ¼ E0: ð6Þ

In order to obtain high measurement accuracy, it is necessary

to select the appropriate HOLZ lines. It is found that the

errors are reduced when combinations of HOLZ lines that

give a large determinant of C0 are selected. In practice, many

combinations having large determinants of C0 are used (584

sets of combinations of HOLZ lines were actually used). The

fluctuations of the solutions that are averaged give rise to the

measured error. The accuracy does not depend only on the

measurement accuracy of one ei. The total error consists of a

relative error and an absolute error. The relative error due to

tracing HOLZ lines is estimated to be 0.05% in the present

experiment. In addition, the absolute error due to the effective

accelerating voltage is determined to be 0.01% from the

comparison between the experimental image and simulated

results at the stress-free region. Another factor that contri-

butes to the absolute error is the thickness dependence of the

positions of HOLZ lines (Mansfield et al., 1993). Fortunately,

this factor is not important if the dynamical effect is very small

as in the present orientation. Therefore, the error due to the

thickness dependence can be neglected. As a result, the final

error has been estimated as 0.06%.

4. Results and discussion

Fig. 3(a) shows a cross-sectional bright-field TEM image of the

Si overlay, BOX, and Si substrate that comprise the SOI wafer.

Selected-area diffraction (SAD) patterns taken from each

region are displayed in Figs. 3(b)–(d). The positions of the

selected-area aperture are shown by large circles in Fig. 3(a).

A diffuse ring due to amorphous SiO2 can be seen in Fig. 3(c).

It is noted that the Si overlay and the Si substrate are slightly

misoriented because the SOI wafer

was made by the bonded method.

CBED patterns were taken at

various points across the Si–SiO2

interfaces. The effective accelera-

tion voltage was determined using a

reference image taken from the

region which was 10 mm or more

away from the interface. For illus-

tration, the raw CBED patterns

observed at distances of 5.0 and

2.0 mm from the interface between

the BOX layer and the Si substrate

are displayed in Figs. 4(a)–(b). In

addition, the raw CBED pattern

observed at distances of 2.0 mm

from the interface between the

BOX layer and the Si overlay is

displayed in Fig. 4(c). The exact

positions of the measurements were

determined from the traces of the

contamination due to the exposures

on the sample. Although raw CBED

patterns become ambiguous close to

the interface, strong FOLZ lines are

visible. In Figs. 4(d)–( f), the FOLZ

lines traced by the method

described above are superimposed

on the background-subtracted

images. The central areas enclosed

by the white boxes in Figs. 4(d)–( f)

are shown in greater detail in Figs.

4(g)–(i).

The local lattice parameters were

determined for the three CBED

patterns shown in Fig. 4. In order to

confirm the validity of these values,

the CBED patterns were simulated
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Figure 4
(a), (b) Raw CBED patterns obtained at distances of 1.0 and 2.0 mm from the interface between the
BOX layer and the Si substrate. (c) Raw CBED pattern obtained at a distance of 2.0 mm from the
interface between the BOX layer and the Si overlay. (d)–( f ) Images in which HOLZ lines traced by the
present method are superimposed on the patterns in (a)–(c) after background subtraction. (g)–(i)
Corresponding enlarged images of the regions outlined by white boxes in (d)–( f ).



using dynamical theory, where the lattice parameters deter-

mined by the present method were used. The experimental

CBED patterns which superimpose the dynamical simulated

results are shown in Figs. 5(a)–(c). It is found that the HOLZ

lines obtained by dynamical simulation are perfectly super-

imposed on the experimental CBED patterns, implying that

these images can be sufficiently approximated by kinematical

theory.

The distribution of residual strain components as a function

of the distance from the SiO2/Si interfaces is presented in Figs.

6(a)–(c), where the vertical grey band represents the position

of the BOX layer. The results of the micro-Raman method are

also displayed in Fig. 6(d). The side of the wafer containing the

Si substrate has a slight tensile stress and that of the Si overlay

has a compressive stress, although there is almost no shear

stress. Consequently, it is found that the residual stress of the

SOI wafer is normal stress. The stress on both sides of the

wafer increases towards the Si/SiO2 interface. The good

agreement between the results obtained from the CBED and

micro-Raman methods leads to the conclusion that the

validity of the CBED method is clearly substantiated.

5. Conclusions

A simple and robust method is proposed to accurately

determine local strain fields from energy-unfiltered CBED

patterns. This method involves the subtraction of background

intensity, the extraction of HOLZ lines by tracing using a
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Figure 6
(a)–(c) The distribution of strain components a, b and � as a function of
distance from the Si/SiO2 interface in the SOI wafer and (d) the
distribution of strain measured by micro-Raman spectroscopy. The
vertical gray band denotes the position of the BOX layer. In (d), lateral
error bars express the diameter of the laser beam.

Figure 5
(a)–(c) Dynamical simulated CBED patterns superimposed on the
background-subtracted experimental CBED patterns in Figs. 4(d)–( f ).



Radon transformation and a system of analytical strain

determination without the need for an optimization process

such as �2-based minimization. The process is demonstrated

by studying the strain in [012]-oriented Si across the SiO2/Si

interface in a SOI wafer. The results are compared with those

from micro-Raman spectroscopy, and the CBED method

achieves an accuracy level above 0.06% even when energy-

unfiltered CBED is used. This method can immediately be

applied to other materials of any crystal symmetry without the

need for prior assumptions of lattice parameters.
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Krämer, S. & Mayer, J. (1999). J. Microsc. 194, 2–11.
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